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Closed-form expressions for the turbulent mean reaction rate and its covariance with 
the temperature are derived for premixed and non-premixed combustion. The limit 
of large activation energies is exploited for a chemical reaction rate that, by virtue of 
coupling functions, depends on the mixture fraction and a non-equilibrium progress 
variable only. The probability density function (p.d.f.) formulation with an assumed 
shape of the p.d.f. is used; a beta-function distribution is assumed for the progress 
variable. The mean reaction rate is expressed in terms of the mean and the variance 
of the temperature and, for non-premixed combustion, of the mixture fraction. The 
reaction kinetics are represented by the non-dimensional activation energy and the 
laminar flame velocity. For non-premixed systems the possibility of local extinction 
by flame stretch is considered. 

1. Introduction 
Second-order closure models have received, in spite of their inherent uncertainties, 

a considerable acceptance in the field of non-reacting flows, but few calculations of 
reacting flows have yet been performed. One of the reasons for this is, certainly, that 
the interaction between fluid dynamics and chemistry remains poorly understood. 
The problem may be split into two parts: the effect of the reaction on the turbulence 
and that of the turbulence on the reaction. As far as the influence of the reaction- 
induced density changes upon the flow field is concerned, a considerable simplification of 
notation is achieved by the use of density-weighted averaging (Libby 1977). However, 
this does not solve the closure problem. The hypothesis that the turbulence modelling 
that has been developed for constant-density flows can be carried over to the density- 
weighted equations has not yet been verified (Bray 1979). In fact, it can be shown that 
nearly all modelled terms in the equations should depend to some extent on density 
gradients or on reaction rate (Bilger 1976; Pope 1979; Borghi & Dutoya 1979). It is 
not yet clear how many additional terms will be needed to account for the influence 
of the reaction on the flow field. 

The present paper focuses on the influence of turbulence on the reaction rate. This 
problem has been the subject of a survey paper by Libby & Williams (1976) and is 
discussed in a recent review paper by Bray (1979). Several collections of papers have 
appeared during recent years that were concerned with the problem. Worth men- 
tioning are: the proceedings of the AGARD Meeting on ‘Analytical and Numerical 
Methods of Investigation of Flowfields with Chemical Reactions, Especially Related 
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to Combustion’ in Libge 1974 (AGARD Conf. Proc. 164); the proceedings of the 
Project Squid Workshop on ‘Turbulent Mixing in Non-Reactive and Reactive Flows’, 
Purdue University 1974 (Murthy 1975); the Special Issue on ‘Turbulent Reactive 
Flows’ (Combustion Sci. & Tech., vol. 13, 1976); the 15th AIAA Aerospace Science 
Meeting (Kennedy 1978) and the proceedings of the recent AGARD Meeting on ‘Com- 
bustor Modeling’ in Cologne, 1979 (AGARD Conf. Proc. 275). 

Briefly, the problem has been attempted by looking at several limiting cases. The 
early approach was to treat the nonlinearities of the reaction rate in the same way as 
the convective nonlinearities. The case which was the most often considered is that of 
a one-step unidirectional reaction A + B - + C  with the reaction rate w = kYAYB. If 
the rate coefficient k is a constant the turbulent mean reaction rate can be written 

= k(Y,Y, + YX Y b )  and the problem is closed if an equation for the mean product 
of the concentration fluctuations is modelled. This approach was also extended to an 
Arrhenius form of the reaction coefficient, k = Bexp ( -  E/T) ,  but it breaks down if 
the ratio of the activation temperature E to the mean temperature is not small 
(Borghi 1975). 

Another limit is related to local chemical equilibrium by the ‘fast chemistry’ 
assumption. It applies only to flows that are mixing controlled such as diffusion 
flames. The assumption is that the reaction is so fast that local chemical equilibrium 
is reached instantaneously a t  each point of the flow, i.e. that the characteristic time 
for the reaction is much shorter than that for the diffusion or the residence time even 
during fluctuations. The assumption has the advantage that only the mixing field 
must be calculated by modelled equations for passive scalars. 

Recently the turbulent premixed flame has been tackled by Clavin & Williams 
(1979) from the limit of large-scale fluctuations by considering wrinkled flames in the 
limit of large activation energies. This approach conserves the structures of the 
individual fluctuating laminar flamelets and introduces the statistics afterwards. It 
has the particular advantage that no modelling is required. 

The mean turbulent reaction rate can be calculated statistically with the use of a 
probability density function for the scalars upon which it depends. If the p.d.f. is 
specified a priori the turbulent mean reaction rate can be calculated for any reaction 
kinetics. Bray & Libby (1976), Bray & Moss (1977), Libby & Bray (1977) and Libby, 
Bray & Moss (1979) assumed the p.d.f. for the scalar progress variable in a premixed 
system to consist of two Dirac delta functions a t  the boundaries and a distribution in 
between. A weighting factor of the distribution then determines the magnitude of the 
reaction rate. This factor is not fixed but calculated from a modelled balance equation. 

A general way to determine the p.d.f. is the following: If there is enough knowledge 
about its shape, an n-parameter function can be assumed for the p.d.f. and the 
parameters can be related to the moments of the random variables. For instance, for 
a one-dimensional p.d.f. the first n moments determine n parameters. Thus the 
problem of the turbulent reaction rate is solved once the equations for the moments 
of those scalars on which the reaction rate depends are modelled. For practical calcu- 
lations this formulation has the disadvantage that it involves an integration over the 
reaction rate multiplied by the p.d.f. A closed-form integration would be desirable 
but except for very simple forms of reaction rate and p.d.f. the integration can only be 
performed numerically. This is particularly laborious for problems where the reaction 
rate depends on more than one random variable. 

- -  - 
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To overcome this difficulty asymptotic limits of the reaction rate can be analysed. 
For combustion applications a sufficiently realistic limit is that of a one-step reaction 
with a large activation energy. It is known that the thermal theory of laminar flame 
propagation (Zeldovich & Frank-Kamenetzkii 1938) is based on this limit. Also, by 
the powerful technique of large activation energy asymptotics many important 
features of laminar flames have been clarified during recent years. This development 
was largely stimulated by an early review article by Williams (1971). Highlights of 
this research were the treatment of the one-dimensional flame propagation (Bush & 
Fendell 1970; Fendell 1972), the analysis of ignition and extinction in diffusion flames 
(Lifihn 19741, the explanation of the cellular structure of premixed flames by Lewis- 
number effects (Sivashinsky 1977), the description of the chemical amplification of a 
gasdynamic disturbance leading to explosion (Clarke 1978, 1979) and the already 
mentioned analysis of wrinkled turbulent flames by Clavin & Williams. These and 
other results will be summarized in a forthcoming book by Buckmaster & Ludford 
(1981). 

In  this paper the limit of a large activation energy will be exploited to derive closed- 
form expressions for the turbulent mean reaction rate. From the asymptotic treatment 
of laminar flames it is known that the reaction takes place in a thin inner layer situated 
between two chemically inert outer layers. In evaluating the mean turbulent reaction 
rate in the large activation energy limit, one thus looks for the probability of finding 
a thin inner layer at a particular point of the turbulent flow field. This view follows 
from the intuition that the mean reaction rate must be related to the statistics of an 
oscillating laminar flame surface. 

It seems appropriate to close this introduction by reference to the first model for 
the turbulent mean reaction rate, the ‘eddy break-up model’ of Spalding (1971~).  
This model relates the mean reaction rate in turbulent shear flows to the velocity 
gradient dG/dy and was successful in predicting confined premixed flames. A careful 
examination of this flow figuration shows that the model relies on a flame stabilization 
effect rather than on a specific influence that turbulence has on the reaction rate: As 
the turbulent flame velocity is the highest where the turbulence intensity is the highest 
(Damkohler 1940), a flame that propagates against the mean flowin an inhomogeneous 
turbulence field and that has reached a region of high turbulence intensity will not be 
able to leave this region and to propagate any further. It is stabilized there and the 
mean reaction rate is thus greatest in this region. In  turbulent shear flows it happens 
that this is the region where the velocity gradient is the highest. This not only explains 
the apparent relation between the mean reaction and the velocity gradient, but it also 
explains the limitations of the model (Spalding 1976). 

2. Formulation 
2.1. The laminar reaction rate 

A most convenient, and sufficiently realistic assumption that will be used in this 
analysis is that of equal diffusivities of heat and matter, Lei = 1, i = 1,2,  . . . , n. Further- 
more, radiative heat transfer and viscous dissipation are neglected in the energy 
balance equation and constant pressure is assumed. Then for simple flow geometries 
(jets, mixing layers, stagnation point flow) there exists a conserved scalar Z to which 
the element mass fractions and the enthalpy are linearly related. We take Z to be the 
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fuel element mass fraction or mixture fraction. It varies between 2 = 0 and 2 = 1 
and obeys the same diffusion equation as a chemically inert species. In  Cartesian 
co-ordinates 

az a ( ::) 8 2  
p-+pva-=- pD- . 

at axa ax, 

It is assumed that a single chemical reaction between fuel and oxygen is rate 
determining, 

vk.F+vbO,+products, 

and that the products are related to each other by stoichiometric relations. Then a 
single progress variable describes the extent to which the reaction is completed. This 
variable is bounded between its unburnt and its burnt value (index u and b), both 
depending on the mixture fraction. We take a reduced temperature 

as the progress variable. The balance equation for the temperature T is 

Here the specific heat cP has been assumed constant for simplicity. As the heat of 
reaction Ah is negative for combustion reactions, a negative sign has been introduced 
within brackets. 

The chemical reaction term w in equation (3) is related to the fuel consumption 
rate S ,  which is assumed to have the bimolecular form 

W B  
P M o  

(4) 

Here B is the frequency factor and E the large activation temperature. The density p 
is related to the temperature, the pressure and the mass fractions by the equation 
of state. Between the temperature and the mass fractions exist the coupling relations 

where the Mi's are the molecular weights and YO, the oxygen mass fraction in the 
oxidizing stream. With these relations the reaction rate is a function of 2 and @ only. 
For simplicity the fuel stream has been assumed to consist of pure fuel. 

The stoichiometric mixture fraction is derived from (5) and the condition 
YFst = 0, Yost = 0 as 

T r  
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FIGURE 1. Shapes of the beta-function distribution. 

In  terms of these quantities we have 

”’ (T - T,(Z)) + 2, YF = -T,,-T,(Z*,) 

Y, = -Yoa (T-T,(Z))-l+Z ( Tst - U Z S J  

These reIations will be used in Q 4. 

2.2. The probability distribution 

For the present analysis it is essential that the probability density function is con- 
tinuous and that it is bounded. This reduces the choice to a small number of physically 
realistic functions. Spalding (1971 b )  has used a sinusoidal p.d.f., whereas Lockwood 
& Naguib (1975) used a ‘clipped Gauss) distribution. A triangular p.d.f. has been 
used by Rhodes & Harsha (1972). These authors commented, however, that a beta 
function would have been more realistic. The beta-function distribution was used by 
Richardson, Howard & Smith (1953)) Rhodes (1975) and Janicka & Kollmann (1979). 
The beta-function p.d.f. 
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has the advantage over the other functions that it allows the two parameters tl. and p 
to be expressed in terms of the mean Z and the variance 2'2 analytically: 

As the maximum of the mean square fluctuation is given by Z( 1 - 2)  the parameter y 
is a measure of the relative mean square fluctuation 

The beta function can take quite different shapes, as demonstrated in figure 1. I n  
particular, for large fluctuations it exhibits spikes a t  the boundaries. This behaviour 
is attractive for the progress variable in the case of fast chemical reactions, where one 
expects the mat,erial between the unburnt and the burnt state to be rapidly consumed. 
I n  this study the beta function distribution will be used for 0 only. I n  the case of 
non-premixed combustion only the @-dependence of the p.d.f. will be specified. The 
Z-dependence of the joint p.d.f. remains arbitrary. At this time the influence of 
intermittency, mixing due to large coherent structures and the influence of the 
combustion on the p.d.f. of the conserved scalar Z are poorly understood, so that this 
caution is necessary. Only for the purpose of illustration a beta-function distribution 
in Z direction will be used. 

3. Premixed combustion 
This case is simplified by the fact that the mixture fraction is specified, such that 

the reaction rate depends only on the progress variable. Using Favre's averaging 
process defined by 

with p T = j @  and pT"= 0, 

the equations for the mean temperature 
large Reynolds numbers as 

T = !F+T", (12) 

and the variance 5";; may be derived for 

( - A h )  #, aP a rv pfiu- = - (-pZT") +jj 
ax, ax, V k  MF c p  - 

( -Ah)  T"X" . _ _  aT2 a - '  -aT 
pvu- - - - ( - pvlT"2) + 2jiv:T'- - 2jZT + 2 p  

VkMFCp - ax, ax, ax, - 
In  these equations the turbulent fluxes - vl T" and - vl Ttr2 and the scalar dissipation 
E ,  must be modelled. We restrict o u e t e n t i o n  here to the modelling of the mean 
reaction rate x" and of the covariance T S .  If the reaction rate is expressed in terms 
of 0 they are written 

(14a) 

T"S" = T ( O ) X ( O ) ~ ( O ) d O - ~ # .  - 1: 
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We look for approximations to these integrals under the condition that the activation 
energy is large. I n  this case the exponential term in equation (4) increases very 
rapidly as the temperature approaches the maximum temperature Tb. At T = Tb, 
however, either the fuel or the oxidizer mass fraction vanishes so that the reaction 
rate decreases to zero. For E + co we thus expect a very steep peak of the reaction 
rate in the vicinity of Tb. 

Following Williams (1975a) the small expansion parameter for large activation 

T: 
energy asymptotics is 

€ =  
(Tb - Tu) ' 

With 0 = l-€y, (16)  

the density, the concentrations and the Arrhenius term in the reaction rate is written 

Thus the reaction rate is written to first order 

Here the condition Yw,b YO,b = 0 has been used. As both, YF,b and YO,b are small within 
the flammability limits, b has been taken to be of order unity. This is the intermediate 
case between the limits b --f 0 (first-order reaction far from stoichiometric) and b -+ co, 
(second-order reaction a t  the stoichiometric mixture) which are both covered 
asymptotically by this formulation (Peters 1979). 

The reaction rate S and its zeroth- and first-order expansions are shown in figure 2 
for a methane-air flame with Z = 0.04 (6 = 0-729), Tb = 1716 K, E = 20000 K, 
T, = 300 K, pu = 1.12, p = puTu/T, B = 1.857 x lo1' om3 mol-I s-l. It is seen that the 
first-order expansion follows the exact expression, equation (4), very closely even on 
the left side of the maximum until it  overshoots to negative values, while the zeroth- 
order expansion gives too large values in this region. 

The probability density function is expanded as 
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0- 
FIGURE 2. The laminar reaction rate. --, exact expression; - - -, zeroth order; 

-._._ , first-order expansion. 

where 2 is taken to be of order unity to account for the possibility of relatively large 
values of a. 

Substituting equations (18)-(20) into equation (14) and integrating, we obtain in 
the limit B +  0:  

- *J 
O3 (1 +by) ( 1  -&y)yP( 1 - s(Q +ay) y) exp ( - y) dy 

( - A h )  w r ( P )  I 0 
s=  

where the first-order terms are 

f.0.t. = - E @ +  1)  (Q + (p+ 2) (!2(b - 2 )  +a+ (P+ 3) ( ~ ( b  -a )  - Q&b - (P+ 4 ) d b ) ) ) .  ( 2 2 )  

A simplification of the expression for the mean reaction rate is obtained if 8 is replaced 
by an expression containing the flame velocity vu derived in the large activation energy 
limit for a laminar flame (Peters 1978) 

For practical purposes it is noted that the gamma functions appearing in equation ( 2  1) 
may be approximated with sufficient accuracy by the use of Stirling's formula 

leading to 
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FIGURE 3. The turbulent mean reaction rate. (a) First-order approximation. ( b )  Exact evalustion; 
- - -, zeroth-order approximation for y = 0.5. 

Combination of equations (21), (23) and (25) finally yields the expression 

Thus the laminar kinetics are represented by the values of the flame velocity and 
the activation energy, which are well known for many fuels. Turbulence comes into 
play via /3 and y ,  which are related t o  the mean temperature and the temperature 
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fluctuations. The turbulent mean reaction rate vanishes as it should for -+ 0, a -+ 1 
and y-f 0. Figure 3 shows a comparison between exact evaluation of s" and the 
asymptotic approximation. It is seen that the zeroth-order result is good for strong 
fluctuations while the first-order terms give fairly good results up to y = 4 if the 
negative values are dropped. 

The limit of strong fluctuations, y+ 0, leads with r ( x )  = I?(%+ l)/x, 

This expression exhibits basically the same dependence on G(1- G) as Bray and 
Libby's model. It also shows via v, an explicit dependence on laminar kinetics. Libby 
& Bray (1980) obtain in a recent paper a linear dependence of S on v,, while we obtain 
a quadratic dependence. 

The integral-in equation (14 b) is evaluated in the same way by replacing p by pT. - 
(29) 

This leads to 
T"8" = s",(Tb-T,)-(~-Tu)x", 

where s", has the same form as $ with pb replaced by Pb and Q by Q +a. Then one 
has to zeroth order - 

T"S" = (Tb-T,)(l-a)s". 

Very similar expressions were found by Bray (1979) and by Borghi & Dutoya 
(1979). These authors obtain a constant value c, < 1 rather than the value 1 in the 
second brackets of equation (30). From the present result i t  is seen that the constant 
approaches 1 in the limit of large activation energies. 

4. Non-premixed combustion 
4.1, General analysis 

In  this case the reaction rate depends on two quantities, the mixture fraction and the 
progress variable. The Favre-averaged equations for the temperature and its variance 
are to  be supplemented by the corresponding equations for the mixture fraction. The 
reaction rate is expressed in terms of 0 and 2 by writing 

T -T, a = s t  
m y  J 
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FIGURE 4. The laminar reaction rate for 0 = 0.95. -, exact expression; 

- - -, zeroth order; - . - * -, expansion equations (36) and (37).  

Different expressions for Tb(Z) are valid in the fuel-lean and fuel-rich regions: 

therefore we split the integral for the mean reaction rate into two parts 

Introducing the expansions 
0 = 1 - €y, z = ZSt( 1 +€C), (35) 

the concentrations and the product of the density and the exponential term are 
expanded to first order. The reaction rate is written: 
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This form rather than a truncated second-order expansion is used in order to obtain 
the best approximation of the reaction rate. For the combustion of met,hane con- 
sidered before the reaction rate is plotted over Z for 0 = 0-95 in figure 4. The above 
expansion follows the exact curve very closely. The maximum of the reaction rate 
lies on the fuel-rich side rather than a t  the expansion point Zst. This suggests an 
expansion of the p.d.f. around Z,, the value where the reaction has its maximum. 
This maximum is obtained from the zeroth-order expansion of equation (37) to lie a t  

1 + 1, y, = - 1-%t  
1 - zst* 6 = - 

2 8 ,  

Following $2.2 the joint p.d.f. has the form 

where a, /? and y = a + p are again functions o f 2  such that no statistical independence 
is assumed. By definition A ( Z )  is identical with the marginal p.d.f. 

(40) 

We expand equation (39) around 0 = 1 and 2, = ZSt( 1 + el&) as 

where for variable and p those at Z, are used. Since figure 4 shows that the reaction 
rate has a very steep peak in 2-direction, first-order terms in Z-direction are neglected. 
Introducing these expansions into equation (34) and integrating, one obtains 

+ (&z-&&1) (P+ 1) (P+ 2) + (Q3 - 4 2 )  (P+ 1 )  (P+ 2) (P+ 3) 

- a&s(P+ 1) (P+ 2) (P+ 3) CP+ 4)), (42) 

where the Qi's contain terms up to second order that  are given in the appendix. 
Higher-order terms can be neglected. The integral in the covariance of the temperature 
and the reaction rate 

is evaluated in the same way by replacing the density p by pT. This leads to the same 
form as (41) with pst replaced by pst T,, and SZ by SZ +a.  Thus the zeroth-order one has 

TzI 

T ' X "  = (q, - qx". *(44) 

The comparison of the numerical evaluation of x" with the asymptotic limit, equation 
(42), is shown in figure 5 and 6. Here A ( Z )  was assumed to be a beta-function in 
terms of 2 (with parameters az and pz). The parameter a, and Po ofthe beta-function 
in terms of 0 were set constant, such that statistical independence was assumed for 
this evaluation. Values of 6 = 0.95 and = 0.8 with yo = a, +Po = 2, which are 
typical for diffusion flames, were assigned. The mean reaction rate is plotted over 



Turbulent mean reaction rates 423 

t 7  
S X  lo3 

(s-') 6 

5 

4 

3 

2 

1 

I I 

0 0.2 0.4 0.6 0.8 1 .o 
2- 

FIGURE 5. The turbulent mean reaction rate for @ = 0.95. (a) Second-order 
approximation; (b )  exact evaluation. 

- 

z with yz as parameter. It is seen that the overall agreement is satisfactory while the 
values for 6 = 0.8 are somewhat too low. The broadening of the reaction rate by 
mixture fract,ion fluctuations is not as large in the asymptotic value as in the numerical 
evaluation. This is due to  the comparatively poor expansion of the joint p.d.f. in 
2-direction. 

The question arises: How are the mean and the variance of 0 related to those 
of T and Z?  Janicka (1979) derived a balance equation for his progress variable r .  
Its turbulent counterpart has to be modelled, which causes new problems. As an 
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Tho turbulent mean r e a h o n  rate for @ = 0.8. (a)  Second-order 
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w 

approximation; (b )  exact evaluation. 

alternative it is proposed to mAdel the temperature equation in the conventional 
fashion and to calculate p and Tt12 from the definitions 

(45) 
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which relate 5?, to 0, Of',. The integration over 0 is readily performed: 

+IO1 T:(Z)A(Z) d 2  - P. J 
I n  the special case of statistical independence of O and Z with constant a and p the 
mean and the variance of O are given by 

Thus, once the solution of the system (13) and the correspzding equations for 2 
and @ are known a t  a given point in the flow field, a and @If2 and thus a and /3 in 
equation (42) can be determined. 

4.2. Local extinction of diffusion Jlamelets 

Up to this point we have assumed a given shape of the p.d.f. without considering the 
possibility of extinction. If extinction occurs, a t  a given extinction temperature 
T,(Z), the temperature drops very rapidly to the frozen temperature T,,(Z). Thus we 
expect the p.d.f. between T,(Z) and T,(Z) to  be vanishing small. This behaviour can, 
of course, not be accounted for by a two-parameter shape of the p.d.f. For this reason 
we will develop an alternative formulation, which takes extinction explicitly into 
account. 

We may picture the turbulent flame as an ensemble of laminar diffusion flamelets. 
This concept has been introduced by Williams (1975 b) .  A laminar diffusion flamelet is 
defined as a struct>ure in which an asympt,otically thin reaction zone is embedded 
between two convective-diffusive zones at the local instantaneous surface of 
stoichiometric mixture. I n  a turbulent shear flow diffusion flamelets are distorted 
and stretched by the action of vorticity. 
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Stretching of a flamelet makes the concentration and temperature gradients per- 
pendicular to the flame steeper and increases the heat loss of the reaction zone to its 
surroundings. If the rate of heat loss is not balanced by the heat production due to 
chemical reaction, the flamelet will be quenched locally. 

Let us assume that the mixture fraction Z is given in the turbulent flow field as a 
function of space and time by solution of equation (1). Then the surface of stoichio- 
metric mixture can be determined from 

mx,,t) = zst. (51) 

Let us introduce a co-ordinate system such that one co-ordinate, xl, is replaced by 
the mixture fraction 2, while the others, Z, = x,, Z, = x,, r = t remain unchanged. 
Applying formally the transformation rules 

a a aza +-- (j = 2,3), ax, az, aX,,az 
_ -  -- 

one obtains the temperature equation (3) with L(Z)  = 0 as 

aZ a2T 

8 2  a2T a2T PT) (-cr)G. 
(53) +2--+-+- =- ax,azaz, az; az,z 

I n  the asymptotic limit of large activation energies, all terms involving derivatives 
with respect to 7, Z, and Z, are of higher order in the thin reaction zone and can be 
neglected to lowest order. One obtains the temperature equation in the reaction zone 
as 

Here (55) 

is the instantaneous local scalar dissipation rate, conditioned a t  stoichiometry. We 
may look a t  Xst as the inverse of the characteristic diffusion time. If the ratio of the 
reaction time to the diffusion time, the second Damkohler number, decreases, quench- 
ing occurs. An asymptotic analysis of ‘quenching in laminar counterflow diffusion 
flames has been given by Lifi&n (1974). Peters (1980) has cast equation (54) in the 
same form as the one that governs LifiAn’s diffusion flame regime to obtain the 
quenching condition for diffusion flamelets. Essentially, there is a maximum value 
of xst, called xs, corresponding to a maximum local stretch, at which quenching 
occurs. In a plot of the temperature profile over 2, obtained from the solution of 
equation (54), there exists a limiting profile T,(Z) which corresponds to extinction of 
the diffusion flamelet. This profile can be calculated from the details of LiiiBn’s 
analysis. For small values of Z,, extinction takes place a t  the transition from the 
diffusion flame regime to the premixed flame regime a t  a premixed temperature 

T, = 3, - T Y E ,  (56) 
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FIGURE 7.  Areas of integration with limiting profiles T, and 0,. 
Shaded area: stable combustion. Blank area: quenched states. 

Z -  

and the profile T,(Z) is given by 

(Tp-Tu(Zp))- (Tu,F-Tu,o) (2-2,) 
2-2, 
1-2, 

Tg = Tp-- 

Here y,(y) is the solution of the inner flame structure in the premixed flame regime. 
The parameter np is in the present case close to 1-344. The inner profile may be approxi- 
mated by 

where the constants up, A,, B, are determined from the condition that y1 and its 
first and second derivative are continuous at  7 = n,. This leads for n, = 1.344 to 
a, = 0-9262, A ,  = 1.8745, B, = 0.15547. This profile is shown for the combustion of 
methane in air in the T-Z and the 0-2 plane in figure 7. The shaded area above the 
limiting profile corresponds to  stable burning, the area below it to unstable states 
which are rapidly extinguished. Thus the quenching changes the joint probability 
distribution. For a fixed Z quenching results in a temperature 0 = @,(Z). With a 
function f(@, 2) in the form of equation (39) and the definition 

f (0 ,Z)  for 0 2 O,(Z), 
(59) 8 =  (() for 0 < 0 < 0,(2), 

the joint p.d.f. takes the form 

(60) 
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FIGURE 8. Laminar reaction rate over 0 and 2. (a) No quenching; 
( b )  only stable states considered. 

Here S is the Dirac delta function. As the quenched states at  O,(Z) do not contribute 
to the mean reaction rate the integration has thus to be performed over pq(O, 2) only, 

The entire laminar reaction rate and that part which exists in the stable region of 
the 0-2 plane are shown in figure 8. It is seen that nearly half of the total reaction 
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2- 
FIGURE 9. Exact evaluation of the turbulent mean reaction rate 

for stable states only, = 0.95. 

t 1.5 

Sx lo4 
( S - 9  

1 .o 

0.5 

/Yyz = 2o 

0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 10. Exact evaluation of the turkulent mean reaction rate 
for stable states only, @ = 0.8. 

z- 

falls into the unstable part of the plane. Thus quenching due to flame stretch is an 
important factor for the evaluation of the mean reaction rate. I n  figures 9 and 10 the 
mean reaction rate calculated numerically from equation (61) has been plotted over 
2 for 6 = 0.95 and @ = 0.80 respectively. These plots are to be compared with those 
in figures 5 and 6. It is seen that the mean reaction rate calculated from the asymptotic 
formula, equation (42), lies reasonably between the two limits of zero and entire 
quenching due to flame stretch. 
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5. Conclusions 
For large activation energies the reaction rate has a sharp peak a t  a definite location 

in the probability space. In  the asymptotic limit the laminar reaction rate cuts a 
small part of the p.d.f. out of the integral for the mean turbulent reaction rate. Thus 
only the value of the p.d.f. a t  the reaction rate maximum is important for the evalua- 
tion. This value depends much on the choice of the p.d.f. and thus the mean reaction 
rate is very sensitive to this choice. This is in contrast to previous findings (Bray 
1979)) which state that the p.d.f. does not influence the reaction rate very much. 

Physically, the limit of large activation energies results in asymptotically thin flame 
structures. The present analysis uses this property in the space of the random variables 
rather than in the physical space: This allows the evaluation of mean turbulent 
reaction rates. The resulting closed-form expressions can be easily incorporated in 
turbulent combustion models. 

In  this study a beta-function p.d.f. was used for the progress variable. The Libby- 
Bray-Moss model for premixed combustion is hereby recovered as a limiting case for 
large fluctuations. The beta-function formulation extends the model away from that 
limit and may thus be regarded as a good choice. I n  the case of non-premixed com- 
bustion the dependence of the joint p.d.f, on Z remained arbitrary. The resulting 
expression for the turbulent mean reaction rate, equation (42 ) )  shows that only one 
value of the marginal p.d.f., A(Z,),  is needed for the evaluation of the mean turbulent 
reaction rates. 

Support for this work was partly provided by the Deutsche Forschungsgemeinschaft 
under Grant number PE 241/1. The first author enjoyed the stimulating discussions 
with Paul A. Libby on the subject during his stay at La Jolla, California, which are 
gratefully acknowledged. 
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